
Multi–Layer Perceptron

Alexandre Devert
Software Engineering School of the USTC

March 28, 2012

1 Introduction

A Multi–Layer Perceptron, or MLP is a very simple and common example of
feedforward neuron network.

1.0

y1

y2

x1

x2

x3

1.0

z

Figure 1: A MLP with 3 inputs and 1 hidden layer of 2 neurons, and 1 output
neuron

Figure 1 shows a MLP. The left-most layer is called the input layer. The
right-most part is the output layer. The inner layer is the hidden layer. One
can see a MLP as a function F (X, V,W ) = z.

• n is the number of inputs

1



• h is the number of hidden neurons

• X is the input vector {x1, x2, . . . , xn} of the MLP, dimension n

• z is the output of the MLP

• V and W are the weigth vectors of the MLP.

• Vi = {v1,i, v2,i, . . . , vn,i, vn+1,i} where Vi is the weight vector for hidden
neuron i. vn+1,i is the bias weight of the hidden neuron i.

• vj,i is the weight between input i and hidden neuron j.

• W = {w1, w2, . . . , wh, wh+1} where wi is the weight of the connection
between hidden neuron i and the output. wh+1 is the bias weight of
the output neuron.

By setting the V and W weights vectors with the proper values, a MLP
can approximate any function. By using more neuron in the hidden layer,
we can build more accurate approximations. A MLP is commonly used for:

• Regression tasks ⇒ approximation of a function from which we only
have noisy samples.

• Classification tasks ⇒ learning a decision boundary from noisy exam-
ples.

2 Computing the output of a Multi–Layer

Perceptron

A MLP is made of neurons. A neuron itself can be seen as a function g

G(X,U) = f(X.U + un+1) = f

(
un+1 +

n∑
i=1

xiui

)
With

• X is the input vector {x1, x2, . . . , xn} of the neuron

• U is the weight vector {u1, u2, . . . , un, un+1} of the neuron, of dimension
n+ 1

2



• f is the transfer function, tanh is a popular choice. See Figure 2 to
have an idea of what that function looks like.

6 4 2 0 2 4 6
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 2: The tanh function

We can think of a MLP as a function F (X, V,W ) = z. Usually, it is
convinient to break the computation in 2 steps :

1. From the input layer to the hidden layer

2. From the hidden layer to the output layer

It is can be done by storing the outputs of the hidden layer neurons in a
vector Y

F (V,W,X) = G(Y,W ) = f(wh+1 +W.Y ) = f

(
wh+1 +

h∑
i=1

wiyi

)

yi = G(Vi, X) = f(vn+1,i + Vi.X) = f

(
vn+1,i +

n∑
j=1

vj,ixj

)
• Y is a vector {y1, y2, . . . , yn} of dimension h

• W is the weight vector of the output neuron, dimension h+ 1

• V1, V2, . . . , Vh are the weight vectors of the h hidden neurons

3



3 Stochastic Gradient Descent for Multi–Layer

Perceptron

To find MLP weight’s such as the MLP minimize the error on a set of samples,
we will use stochastic gradient descent. The idea is that for a randomly chosen
example point X with desired output z∗, we define the error of the MLP as

e =
1

2
(z − z∗)2

To do reduce the error on that point, all the weights of the MLP will be
modified as following

va,b(t+ 1) = va,b(t) + η
∂e

∂va,b

wb(t+ 1) = wb(t) + η
∂e

∂wb

Where η is the learning rate, how strong is the pertubation we apply to the
MLP weights. The central idea of stochastic gradient descent is that, by
repeating this for many points, with proper value for η, the MLP’s will have
a low error for most points.

3.1 Value for ∂e
∂wb

∂e

∂wb

= (z − z∗) ∂z
∂wb

∂z

∂wb

= ybf
′(wh+1 +W.Y )

We can thus conclude

∂e

∂wb

= (z − z∗)ybf ′(wh+1 +W.Y )

3.2 Value for ∂e
∂va,b

∂e

∂vb,a
= (z − z∗) ∂z

∂vb,a

4



∂z

∂vb,a
= wb

∂yb
∂vb,a

f ′(wh+1 +W.Y )

∂y

∂vb,a
= xaf

′(vb,h+1 + Vb.X)

We can thus conclude

∂e

∂vb,a
= (z − z∗)wbxaf

′(wh+1 +W.Y )f ′(vb,h+1 + Vb.X)

4 Back-propagation algorithm

The back-propagation algorithm is a stochastic gradient descent method spe-
cialized for the MLP, where ∂e

∂vb,a
and ∂e

∂wb
are computed efficiently, using a

minimal amount of memory. It is an iterative algorithm, repeating the fol-
lowing steps

1. Pick a pair (X, z∗) randomly from the training set

2. forward pass

3. backward pass

4.1 The forward pass

This pass computes and store, in this order

1. yi and y′i, where yi = f(si) and y′i = f ′(si) with si = vn+1,i + Vi.X

2. z and z′, where z = f(sh+1) and z = f ′(sh+1)with sh+1 = wh+1 +W.Y

4.2 The backward pass

This pass computes, in this order

1. ρout = (z − z∗)z′

2. ρinb = wbρ
outy′b

3. ∂e
∂wb

= ybρ
out ⇒ wb(t+ 1) = wb(t) + ηybρ

out

4. ∂e
∂vb,a

= xaρ
in
b ⇒ va,b(t+ 1) = va,b(t) + ηxaρ

in
b

5


