
SCHOOL OF SOFTWARE ENGINEERING
OF USTC

FIRST SEMESTER, 2012–2013

Campus: Suzhou

AGILE SOFTWARE DEVELOPMENT

Reusable modules and polymorphism in C

(Time allowed: TWO hours)

The objective of this experiment class is to put to practice the teachings from the lecture on structured
C, where it is shown that is perfectly possible to have objects in C. Also, the simple object polymorphism
approach introduced during the lecture will be used.

The topic is the implementation of a very simplified virtual machine. We want to have a virtual machine
that is easy to extend with new instructions. All the work should be done in pure C. This is the part one of
this work, the other part will be next week, focused on error handling techniques.

You have to work alone, one student per computer, this is non-negociable. It is to help you to be focused
and practice by yourself. If you are stuck after trying various ways, you can call for help. You might have
to patient while the teacher is busy helping someone else.

1. For our virtual machine, we will need to implement a reusable stack object. We will consider that the stack
contains double values, and only that. The stack can grow infinitely. We want the following methods:

• init, setup an empty stack

• destroy, release all the memory used by the stack

• clear, empty the stack

• size, return the size of the stack

• push, push one double value to the stack

• pop, pop the top value from the stack and return it

• top, return the top value of the stack

• dump state, prints the state of the stack in human-readable fashion

A friendly advice : before moving out the next questions, consider testing your code seriously. Do some
stack manipulation, and check that at each step, the stack state is what it should be.

2. We will now define the instructions of our virtual machine. One instruction take as input a stack, and will
modify its state.

• add, pop a and b, push a+ b

• sub, pop a and b, push a− b
• mul, pop a and b, push a× b
• div, pop a and b, push a

b

• sqrt, pop a, push
√
a

• value, push a given value

CONTINUED

– 2 –

• close, pop a and b, push 1 if |a − b| ≤ (αtol + |b|βtol) else push 0. This instruction is to check if
two floating point values are close. αtol and βtol are two parameters of the instruction. By default, a
sensible choice would be αtol = 10−8 and βtol = 10−5.

We want an instruction object, and the 7 instructions would be subtype of this object. This way, the code
of each instruction is well separated from the others. Adding new instructions does not impact on the other
instructions. Thus, the instruction object would have the following methods.

• destroy, release all the memory used by the instruction

• do, taking a stack as only parameter and compute an operation.

• get name, return the name of the instruction

Implement the instruction object and its seven subtypes, using the solution shown during the lecture, ie.
using a delegate structure to store function pointers. Take care of all the memory you used.

